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Thermochemical Water Splitting is a Simple Concept:
Heat + H,O In, H, + O, Out

R. Perret, SAND Report (SAND2011-3622), Sandia National Laboratories, 2011.
G. J. Kolb, R. B. Diver, SAND Report (SAND2008-1900), Sandia National Laboratories, 2008.
S. Abanades, P. Charvin, G. Flamant, P. Neveu, Energy. 31, 2805-2822 (2006).
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Direct storage of solar energy in a reduced metal oxide. I
Hundreds of cycles proposed. I

» Multi-phase, multi-step, thermochemical-electrochemical hybrids

Multinational R&D efforts have gravitated towards two-step, non-volatile MOXJ




31 STC H, Materials Theme: Oxygen Exchange and Transport

Challenge: decrease T and increase ABOXJ

Oxygen Stor age materials with a tWiSt.

» O-atom “harvested” from H,O not air
» Bulk phenomena largely govern O-atom exchange with environment

» Understanding thermodynamics, kinetics, transport, gas-solid
interactions, solid-solid interactions is important

Material subject to €XTr€IMNE environments.

»Redox cycling on the order of seconds

»Large thermal stress per cycle
- 800 °C< T <1500 °C; ATgare ~100 °C/sec

»Large chemical stress per cycle

* 10" atm< pg, <10 atm

Wiater splitting at extremely low Po2

> Strongly reducing “oxidizing” atmosphere

“O” activity in H,0:H, Mgas > Msolid Hgas <1073atm
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Receiver/Reactor and Material R&D must not evolve in “isolation”

)

J. E. Miller, A. H. McDaniel, M. D. Allendorf, Advanced Energy Materials. 4, 1300469 (2014).




A Brief History of Non-Stoichiometric STC Water Splitting

Materials

Cycle thermodynamics: tradeoff between A9, T4z, and H,0:H,

sgi nel

Fe" /Fe’* (unsupported) systems:

High redox capacity (A6>0.1)
Moderate Ty <1400 °C
WS-UNTESTED in H,0O:H, atm

fluorite
Ce*/Ce*" systems:
Low redox capacity (A0<0.08)
High Ty, >1500 °C
WS-“BEST IN CLASS” in H,O:H, atm

WS inactive at Tp; gneer <850 °C

High H,0:H, ratio at Tp; ;nsec <1200 °C

Eerovskite

TM?*/TM>* /TM* (Mn, Fe, Co) systems:

High redox capacity (A6>0.1)
Low-to-moderate Ty <1400 °C

WS-PROMISING in H,0O:H, atm
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A.H. McDaniel, Current Opinion in Green and Sustainable Chemistry, 2017, 4, 37-43.
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5 1 A Brief History of Reactor Design Concepts

ETH/PSI

Solar-Drvven Hgh-Temperature: sag
Thermochermical Cycie Hydrogen Cost *

Chemical Tower Capital Cont gnstaled VTP
cost) ¢

m:}nuuummn w190

Solar 0 Hyorogen (STH)
Energy Conversion Ratio *

et Qe

1.5un Hygrogen Producton Rate * -] T

UNIVERSITY OF MINNESOTA

Efficiency is
a key metric
for US R&D

Science
v B b Mgy

—

*

I
N
(@)

s Dot G P v O i 4 (O ol
Vo bt €oe My
poom s

High cost
of solar
collection

¢09D 8% 001~

Ditferent reactor designs have been explored.
> Fixed material bed, moving material bed, inert gas sweep, vacuum, temperature swing, pressure swing

Increasing solar-to-hydrogen efficiency largely drives R&D.

MO, WS cycle has been demonstrated at scales from watts to kilowatts )




6 I Sandia’s Receiver/Reactor Design Philosophy s

rotating ceramic discs

R. B. Diver et al., J. Solar Energy Engineering. 130, 041001(1)-041001(8) (2008). OXYGEN gy,
J. E. Miller et al., SAND2012-5658 (2012)
I. Ermanoski, International Journal of Hydrogen Energy. 39, 13114-13117 (2014). ATTS00°C Ceramic feleases

oxygen from molecular lattice

A. Singh et al., Solar Energy. 157, 365-376 (2017) co,

ngh solar-to-hydrogen conversion efficiency. CRS

Oxygen-deficient ceramic at
1100°C grabs oxygen from

>C0ntinu0us OIl—SllIl OpCIﬂtiOﬁ (0, molecules, leaving (0

1600} (/"L l S
1200+ Nu - — Ce0, particles
Moving particle bed design advantages: sool- | T
. . . 400p——
>Smaﬂ reactive partlc1€s (~100]Jm) not monoliths 14:00 15:00 16:00 17:00 18:00 “F
0,

» Direct solar absotrption

»Temperature and product separation

» Heat recovery between Trg and Ty

temperature (K)

CPR2 run time (HH:MM)

» Only particles are thermally cycled
> Independent component optimization : e {' L

» Reaction kinetics decoupled from reactor mechanics

Cascading pressure design advantages:
» Ultra-low reduction pressure by chamber isolation

> Decteased pump work requirement | =

CPR2

CO, (CR3) and H,0 (CPR?) splitting demonstrated at power levels 5-10kW,,




7 | Desired Material Behavior Defined by Process Economics

Commercial viability key driver when competing against steam methane

reforming and fossil fuels

Redox capacity (MO_/H,).

» Oxide heating and material inventory

Redox kinetics.

» Cycle time and material inventory

Earth abundance.

» Raw materials

Reduction temperature (T'rg).
» Heliostats (solar concentration)

» Reactor construction materials

Steam requirement (H,O/H,).

»Steam heating and water use

Durability.

» Material replacement

J. E. Miller, A. H. McDaniel, M. D. Allendorf, Advanced Energy Materials. 4, 1300469 (2014).

PROPERTY IDEAL
Redox Capacity HIGH | <10:1 (MO,/H,)
Redox Kinetics FAST | ~sec (match flux)
Earth Abundance MOD >10"/10¢ Si
Ttr @ Reduction LOW <1400°C
H,0/H, @ Oxidation | LOW | <10:1 (H,0:H,)
Durability HIGH >10 years

I. Ermanoski, J. E. Miller, M. D. Allendorf, Physical Chemistry Chemical Physics. 16, 8418 (2014).




Navigating A Highly Constrained Space: Thermodynamic Tradeoffs
¢ | Affect Process Efficiency and Economics

Process metrics (US DOE targets):

H, production rate 50-100mt/day

Solar-to-H, efficiency ~25% Receiver/Reactor engineering and material
H, production cost (US DOE) ~53/kg challenges must be addressed simultaneously
Desired cycle metrics:

Reduction Temperature (T+) ~14002C "

— = steam oxide
Oxidation Temperature (Tqy) ~8009eC . .
—— , : heating heating

O” activity in reduction Hagas < Hsolid Hgas ~10°atm ‘ A )
“O” activity in oxidation Hgas™> Hsolid Hgas ~102atm é
-6
@ 1773K, Pg,, s0ig=10 "atm
200F ' ! ! ' ! ' ' 4 T T T T
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I. Ermanoski, N.P. Siegel, E.B. Stechel, J. Solar Energy Engineering, 2013, 135, 031002 AT (K)
A.H. McDaniel, Current Opinion in Green and Sustainable Chemistry, 2017, 4, 37-43
D. R. Barcellos et al., Energy & Environmental Science (2018) doi:10.1039/C8EE01989D
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Opportunities for Material Discovery

Ideal material is not
unobtainium.

> Desired thermodynamic properties
sandwiched between known compounds

DOE EMN Consortium

N,
‘:P HydroGEN

Advanced Water Splitting Materials

HydroGEN Seedling Projects Taking Up the Challenge

Non-stoichiometric oxide community
needed to bring expertise into this field.
»1deas needed for entropy and enthalpy
engineering

Continued development and application
of DFT.

» Descriptors beyond vacancy formation
energy

Advanced experimental methods.
»High throughput synthesis and

characterization
» Electrochemical approaches

» Operando X-ray spectroscopies

27

learned predicted stability

* Find RP phases that modify redox thermo.
— DFT screening of defect formation energy
— Thin film combinaterics for compound discovery
— High throughput colorimetric screening

O
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* Use machine-learned models coupled to

DFT to discover new redox materials.
— Rapidly screen materials based on machine-

— Formulate descriptor(s) for predicting reaction

network energetics and equilibrium
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* Incorporate second redox active sublattice to

modify thermo.
— DFT method to predict Ad.y a priori using simple
sublattice model formulations
— Discover compounds with optimized thermo (8H, 85)

Arizona State
University

..
Fetele
o e

* Use high-throughput Density Functional
Theory to discover new redox materials.
— Screen >10* known compounds for ground state
stability/synthesizability and favorable thermo at
reduction T<1400 °C

Northwestern
University

Computatonal (kiimoi-0)




10 I What will it Take for Solar Thermal Technologies to Deliver...

Renewable H, or solar fuels in general

»R&D to discover and advance functional materials
»R&D to discover and advance alternative cycle chemistry

»R&D to develop solar reactors and synergistic system concepts
* extremely high temperatures
* high efficiency heat recuperation
* hermetically sealed

* CSP integration

»R&D to develop efficient collectors for high concentration and high temperature

Large scale demonstrations
» public—ptivate partnerships

New policies and regulation to incentivize and
drive private investment




11 I Global Initiatives Gaining Momentum

Article in March 2018 issue of Chemical Engineering (www.chemengonline.com) titled “Solar Chemistry
Heats Up” written by staff editor Gerald Ondrey )
P https://hydrogeneurope.eu/
TABLE 1. RECENT SOLAR-THE : -
Projet (tmetrame). | Parmers” o Newsfront project/hydrosol-plant
Indired: indirectly Solar Institut Jiilich, Hil- | Using solar thermal energy (at . e
solar-heated reformer | ger GmbH, Hille & Maller | 700-1,000°C) to reform CHy, with @
(2016-2019) £0; and H,0, into syngas Solar Chem IStry Heats Up Nt/
Astor: Automized Rheinische Fachhoch- Using solar-thermal energy (at 800— Maijor efforts are underway to develop new process technology for making chemicals using
thermochemical schule Kiln, Stawsberg 1,400°C) to make H, from reaction of sunlight and the products of combustion .
water splitting & Vosding GmbH, AWS- | water with metal oxides iject HYDRUSOL_PLANT
(2017-2020) Technik e K. o os o a1 OOy v e IR L
Sun-to-Liquid Bauhaus Luftfahrt, ETH | Synihesize liquid hydrocarbons from bt il o fipiaeonfltod.
(2016-2019) Zurich, IMDEA Energy, H,0 and CO,, via formation of syngas xf%ﬁ;gﬁ;gyz:‘;aﬂg ?::‘,’:“:; aimore (e Thermochemical HYDROgen production in a SOLar monolithic reactor: construction and
Hydrosol: Solar ther- | CIEMAT, Hyaear B V. Hel- | Using solar-thermal energy (at 800— pd b B
mochemical water | lenic Petroleum, APTL | 1,400°C) to make H, from reaction of e e e ] ]
splitting water with metal oxides i snceskors e o mast. ik plarie Gl Satler: Solar fuels could be Australia’s biggest energy export
{2014-2017)
Sophia: Solar inte- | CEA, HyGear BV, VTT, | Decompostion of steam by a . s . I
grated pressurized | Engie, Hceramix SA, | combination of elecirical and figh- Solar fuels could be Australia’s biggest energy export
high-temperature SolidPower temperature (700—800°C) heat into - .
slectrolysis (HTE) carbon-free Hy and 0, Posted on October 16, 2015, Australasiam News.
(2014-2017) B
Solpart: High-tem- | CNRS, Cemex, Abengoa | To utilize solar-thermal energy to Author: Giles Parkinson
perature solar-heated | Research, Universit perform the calcination step used
reactors for industrial | of Manchester, EPFT, in the lime, phosphate and cement Source: reneweconomy.com. an
production of reactive | comessa, eurovia, New indusiries -
particles Lime Development, Uni- . 3
Lz:;s—znzgje — m E‘m:m:i :.quyad 0PC — _ China Conducts Massive Synthesis of Liquid Solar Fuel httll?]', / /?nghSh 'CaSHFn// ne\gsqoo/r; / 1
asus: Rene , KIT, Baltic sing suifur re energy in an

power gener;{tim [:eramips, Processi In- S—SQ:—stm cycle (for more infor- archive/news _archive/nu O 8 O
by solar particle-te- | novatii el see Chem. Eng. e 2017, A 1,000-tonne industrialization of liquid 807/t20180709_194849.shtml
%Tgfz?fo[; solar fuel synthesis project has been
Dusok Sustaratle | T Geselscha or_|Waking ivogen fortizors v & launched in Lanzhou, capital city of e e i
fertilizer production | Technische Thermoche- | Haber-Bosch process in which the H, | :
flom sun airand | mie. und physik moH. | s derived from water spliting, and northwest China's Gansu Province.
water aixprocess GmbH the N from a solar-thermochemical
(2016—2019) air-separation process
Solam: Solar alumi- | aixprocess GmbH, CSIR, | An effort to decarbonize the alumi-
num smelting NFTN, Eskom, DST {last | num smelting process using solar-
(2015-2018) four South African) thermal energy
Virtual Institute ETH Zurich, KIT, TU To produce CO5-neutral fuels via a
SolarSynGas: Ther- | Clausthal thermochemical route , colar fucl
mochemical research § oy
for CO,-neutral re- " production plant
newable fuels
(2012-2017)
HEST-HY: High ef- Sandia Mational Labora- | To develop new methods and reac-
ficiency solar-thermal | tories, Colorado School of | tors for operating thermochemical
hydrogen Mines, Northwestern Uni- | looping cycles to make H; by splitting
(2014-2017) versity, Stanford Univer-

sity, Bucknell University,

Arizona State University
*Source: DLR, Institute of Solar Research; DLR is a partner in all projects listed



https://www.sun-to-liquid.eu/
https://hydrogeneurope.eu/project/hydrosol-plant
http://english.cas.cn/newsroom/archive/news_archive/nu2018/201807/t20180709_194849.shtml
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13 ‘ Nature’s Thermochemical Water Splitting Process

Thank you for your attention.
Questions?

Source: iStock

Our challenge is to develop efficient and scalable solar-powered
reactors producing 100,000 kg H.,/day without melting houses




